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Abstract

Affirmatively answering a question of Erdős and Pach from 1983, we show for some
constant C > 0 that for any graph G on Ck ln k vertices either G or its complement G
has an induced subgraph on k vertices with minimum degree at least 1

2 (k− 1).
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1 Introduction

Recall that the (diagonal, two-colour) Ramsey number is defined as the smallest integer
R(k) for which any graph on R(k) vertices is guaranteed to contain a homogeneous set of
order k — that is, a set of k vertices corresponding to either a complete or independent
subgraph. The search for better bounds on R(k), particularly asymptotic bounds as k→ ∞,
is a challenging topic that has long played a central role in combinatorial mathematics
(see [4, 8]).

We are interested in a degree-based generalisation of R(k) where, rather than seeking a
clique or coclique of order k, we seek an induced subgraph of order (at least) k with high
minimum degree (clique-like) or symmetrically low maximum degree (coclique-like). By
gradually relaxing the degree requirement, a spectrum of Ramsey-type, or quasi-Ramsey,
problems arise. Erdős and Pach [1] introduced these problems in 1983 and showed that
there is a sharp change in behaviour at a certain point along the spectrum. More precisely,
they gave good estimates for the smallest integer R1/2(k) such that for any graph G on
R1/2(k) vertices either G or its complement G contains some subgraph on ` ≥ k vertices with
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minimum degree at least 1
2 (` − 1). They showed that R1/2(k) = O(k ln k) and R1/2(k) =

Ω(k ln k/ ln ln k), and moreover that for the corresponding problem where 1
2 is replaced

with some strictly larger constant c the corresponding parameter Rc(k) must be at least
exponential in k. (We may take c = 1 to recover the original Ramsey numbers.) Three
of the authors recently revisited this topic together with Pach [5] to give a more refined
understanding of the threshold around 1

2 , showing that the change from polynomial to
super-polynomial growth in k occurs when one seeks a subgraph on ` ≥ k vertices with
minimum degree at least 1

2 (`− 1) + Θ(
√
(`− 1) ln `) (consult [5] for precise details). The

problems just described relate to the so-called variable quasi-Ramsey numbers, whereas here
we focus on the harder version, namely the fixed quasi-Ramsey problem where the sought
subgraph is required to have exactly k vertices rather than at least k vertices as above.

Using a result on graph discrepancy, Erdős and Pach [1] proved that there is a constant
C > 0 such that for any graph G on at least Ck2 vertices either G or its complement G
has an induced subgraph on (exactly) k vertices with minimum degree at least 1

2 (k − 1).
As alluded to in the previous paragraph, they also showed (by way of an unusual random
graph construction) that the previous statement does not hold with C′k ln k/ ln ln k in place
of Ck2 for some constant C′ > 0. They asked if it holds instead with Ck ln k, as is the case
for the variable quasi-Ramsey problem. Our main contribution here is to confirm this.

Theorem 1. There exists a constant C > 0 such that for any graph G on Ck ln k vertices, either G
or its complement G has an induced subgraph on k vertices with minimum degree at least 1

2 (k− 1).

Although it is short, our proof of Theorem 1 has a number of different ingredients,
including the use of graph discrepancy in Section 2, an application of the celebrated ‘six
standard deviations’ result of Spencer [9] in Section 3 and a greedy algorithm in Section 4
that was inspired by similar procedures for max-cut and min-bisection. It is interesting to
remark that the two discrepancy results we use are of a different nature; the one in Section 2
is an anti-concentration result while the result of Spencer is a concentration result.

2 An auxiliary result via graph discrepancy

Our first step in proving Theorem 1 will be to apply the following result. This is a bound
on a variable quasi-Ramsey number which is similar to Theorem 3(a) in [5]. The idea of
the proof of this auxiliary result is inspired by the sketch argument for Theorem 2 in [1], in
spite of the error contained in that sketch (cf. [5]).

Theorem 2. For any constant ν ≥ 0, there exists a constant C = C(ν) > 1 such that for any
graph G on Ck ln k vertices, G or its complement G has an induced subgraph on ` ≥ k vertices with
minimum degree at least 1

2 (`− 1) + ν
√
`− 1.

Note that the O(k ln k) quantity is tight up to an O(ln ln k) factor by the unusual con-
struction in [1] (cf. also Theorem 4 in [5]). The astute reader may later notice that the
second-order term ν

√
`− 1 in the minimum degree guarantee of Theorem 2 can be straight-

forwardly improved to an Ω(
√
(`− 1) ln ln `) term. Since this does not seem to help in our

results, we have omitted this improvement to minimise technicalities. On the other hand, a
standard random graph construction yields the following, which certifies that the second-
order term cannot be improved to a ω(

√
(`− 1) ln ln `) term.
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Proposition 3. For any c > 0, for large enough k there is a graph G with at least k lnc k vertices
such that the following holds. If H is any induced subgraph of G or G on ` ≥ k vertices, then H has
minimum degree less than 1

2 (`− 1) +
√

3c(`− 1) ln ln `.

Proof. Substitute ν(`) =
√
(2c ln ln `)/ ln ` into the proof of Theorem 3(b) in [5]. (We may

not use Theorem 3(b) in [5] directly as stated as it needs ν(`) to be non-decreasing in `.)

We use a result on graph discrepancy to prove Theorem 2. Given a graph G = (V, E),
the discrepancy of a set X ⊆ V is defined as

D(X) := e(X)− 1
2

(
|X|
2

)
,

where e(X) denotes the number of edges in the subgraph G[X] induced by X. We use the
following result of Erdős and Spencer [2, Ch. 7].

Lemma 4 (Theorem 7.1 of [2]). Provided n is large enough and t ∈N satisfies 1
2 log2 n < t ≤ n,

then any graph G = (V, E) of order n satisfies

max
S⊆V,|S|≤t

|D(S)| ≥ t3/2

103

√
ln(5n/t).

Proof of Theorem 2. Let G = (V, E) be any graph on at least N = dCk ln ke vertices for a
sufficiently large choice of C. We may assume that k > 1

2 log2 N because otherwise G or G
contains a clique of order k by the Erdős-Szekeres bound [3] on ordinary Ramsey numbers.

For any X ⊆ V and ν > 0, we define the following skew form of discrepancy:

Dν(X) := |D(X)| − ν|X|3/2.

We now construct a sequence (H0, H1, . . . , Ht) of graphs as follows. Let H0 be G or G.
At step i + 1, we form Hi+1 from Hi = (Vi, Ei) by letting Xi ⊆ Vi attain the maximum skew
discrepancy Dν and setting Vi+1 := Vi \ Xi and Hi+1 := H[Vi+1]. We stop after step t + 1 if
|Vt+1| < 1

2 N. Let I+ ⊆ {1, . . . , t} be the set of indices i for which D(Xi) > 0. By symmetry,
we may assume

∑
i∈I+
|Xi| ≥

1
4

N. (1)

Claim 1. For any i ∈ I+ and x ∈ Xi, degHi
(x) ≥ 1

2 (|Xi| − 1) + ν(|Xi| − 1)1/2.

Proof. Write |Xi| = ni. We are trivially done if ni = 1, so assume ni ≥ 2. Suppose x ∈ Xi
has strictly smaller degree than claimed and set X′i := Xi \ {x}. Then, since i ∈ I+,

Dν(X′i) ≥ e(X′i)−
1
2

(
ni − 1

2

)
− ν(ni − 1)3/2

> e(Xi)−
1
2

(
ni

2

)
− ν
√

ni − 1− ν(ni − 1)3/2.

Note that n3/2
i > n1/2

i + (ni − 1)3/2, which by the above implies Dν(X′i) > Dν(Xi), contra-
dicting the maximality of Dν(Xi). ♦
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Claim 1 implies that we may assume for each i ∈ I+ that |Xi| ≤ k− 1, or else we are done.
This gives for any i1, . . . , i4 ∈ I+ that(

4

∑
s=1
|Xis |

)3/2

≤ 8(k− 1)3/2. (2)

Writing I+ = {i1, . . . , im}, we next show the following.

Claim 2. For any ` ∈ {1, . . . , m− 3}, D(Xi`+3) ≤
5
6 D(Xi`).

Proof. For X ⊆ V, let us write ν(X) := ν|X|3/2 so that Dν(X) = |D(X)| − ν(X). For
i1, . . . , ir ∈ I+, we may write Xi1,...,ir :=

⋃r
s=1 Xis . For disjoint X, Y ⊆ V, we define the relative

discrepancy between X and Y to be

D(X, Y) := e(X, Y)− 1
2
|X||Y|,

where e(X, Y) denotes the number of edges between X and Y.
Now let i, j ∈ I+ with i < j. Then, by the maximality of Dν(Xi), we have Dν(Xi ∪ Xj) ≤

Dν(Xi), i.e.

|D(Xi) + D(Xi, Xj) + D(Xj)| − ν(Xi,j) ≤ |D(Xi)| − ν(Xi) = D(Xi)− ν(Xi),

and hence

D(Xj) ≤ −D(Xi, Xj) + ν(Xi,j). (3)

Applying (3) (and the fact that ν(Xi`+r ,i`+s) ≤ ν(
⋃3

s=0 Xi`+s) for any r, s ∈ {0, 1, 2, 3}), we find
that

D(Xi`+1) + 2D(Xi`+2) + 3D(Xi`+3) ≤ − ∑
0≤r<s≤3

D(Xi`+r , Xi`+s) + 6ν(
⋃3

s=0 Xi`+s). (4)

Using −D(
⋃3

s=0 Xi`+s)− ν(
⋃3

s=0 Xi`+s) ≤ Dν(
⋃3

s=0 Xi`+s) ≤ Dν(Xi`), we obtain

−
3

∑
s=0

D(Xi`+s)− ∑
0≤r<s≤3

D(Xi`+r , Xi`+s) ≤ D(Xi`) + ν(
⋃3

s=0 Xi`+s),

which combined with (4) implies that D(Xi`+2) + 2D(Xi`+3) ≤ 2D(Xi`) + 7ν(
⋃3

s=0 Xi`+s).
From this, we obtain that

3D(Xi`+3) ≤ 2D(Xi`) + 8ν(
⋃3

s=0 Xi`+s), (5)

where we have used the fact that D(Xi`+3) ≤ D(Xi`+2) + ν(
⋃3

s=0 Xi`+s), which follows since
Dν(Xi`+3) ≤ Dν(Xi`+2). Using the fact that the graph His for any s ∈ {1, . . . , m} has at least
1
2 N ≥ C

2 k ln k vertices, it follows by Lemma 4 (using our assumption on k) that there exists
a subset Ys ⊆ Vis of size at most k which satisfies

|D(Ys)| ≥ k3/2

√
ln(C ln k)

103 .
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However, by our choice of Xis , we have

D(Xis) ≥ Dν(Xis) ≥ Dν(Ys) ≥ |D(Ys)| − νk3/2

≥ k3/2

(√
ln(C ln k)

103 − ν

)
≥ 2

(
8ν

(
3⋃

s=0

Xi`+s

))
,

by (2), provided C is sufficiently large. Therefore, from (5) we find that 3D(Xi`+3) ≤
2D(Xi`) +

1
2 D(Xi`), proving the claim. ♦

Claim 2 now implies that (5/6)(m−1)/3D(Xi1) ≥ D(Xim) ≥ 1 (assuming for simplicity m ≡ 1
(mod 3)), which then implies

m− 1 ≤ 3 ln(D(Xi1))

ln(6/5)
≤ 6

ln(6/5)
ln(k− 1).

By (1), we deduce that at least one of the m sets Xi with i ∈ I+ satisfies

|Xi| ≥
N ln(6/5)

25 ln k
.

This last quantity is at least k by a choice of C sufficiently large, contradicting our assump-
tion that |Xi| ≤ k− 1 for each i ∈ I+. This completes the proof.

3 Subgraphs of high minimum degree via set-system discrepancy

In this section we prove, based on a well known discrepancy result of Spencer [9], that from
a graph on ` = Ck vertices with minimum degree at least `/2 + C′

√
` (with C′ depending

on C) we can select a subgraph on k vertices that has minimum degree at least k/2.
We start by defining the various standard notions of discrepancy that we need. Suppose

H = {A1, . . . , An} where Ai ⊆ V = [n]. Let χ : V → {−1, 1} be a colouring of V with the
colours −1 and 1. For any S ⊆ V, we write χ(S) := ∑i∈S χ(i) and we define the discrepancy
of H to be

disc(H) := min
χ∈{−1,1}V

max
S∈H

χ(S).

The result of Spencer [9] states that for any such H we have disc(H) ≤ 6
√

n.
For X ⊆ V, we define H|X := {A1 ∩ X, . . . , An ∩ X}. Then the hereditary discrepancy of

H is defined by
herdisc(H) := max

X⊆V
disc(H|X).

The result of Spencer also immediately implies that herdisc(H) ≤ 6
√

n for any H.
Let A be the incidence matrix of H, i.e. A is the n× n matrix given by

Aij =

{
1 if j ∈ Ai,

0 otherwise.

Then we clearly have

disc(H) = min
x∈{−1,1}V

‖Ax‖∞ = 2 min
x∈{0,1}V

∥∥∥∥A
(

x− 1
2

1

)∥∥∥∥
∞

,
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where 1 is the all 1 vector.
Now we define the linear discrepancy by

lindisc(H) := max
c∈[0,1]V

min
x∈{0,1}V

‖A(x− c)‖∞. (6)

Note that here we are using {0, 1}-colourings again. Similarly, we define the hereditary
linear discrepancy of H by

herlindisc(H) := max
X⊆V

lindisc(H|X).

A result of Lovász, Spencer, and Vestergombi [7] states that herlindisc(H) ≤ herdisc(H).
(Note that the factor of 2 from [7] is missing to adjust for the slightly different definition
we are using.) Combining with Spencer’s result, we have

lindisc(H) ≤ herlindisc(H) ≤ herdisc(H) ≤ 6
√

n.

If we set c to be the all p vector (for some p ∈ [0, 1]) in (6), we obtain the following result.

Lemma 5. Let A1, . . . , An ⊆ V = [n] and p ∈ [0, 1]. Then there exists Y ⊆ V such that, for all
i ∈ [n],

||Ai ∩Y| − p|Ai|| ≤ 6
√

n.

We use the previous lemma to prove the following result.

Lemma 6. Suppose G = (V, E) is a graph with ` = Pk vertices for some P > 1 and k a positive
integer, and suppose

δ(G) ≥ 1
2
`+ η

√
`

for some η > 0. Then G has an induced subgraph H on k vertices with minimum degree

δ(H) ≥ 1
2

k +
(

η√
P
− 19
√

P
)√

k.

Proof. Write V = {v1, . . . , v`}, let A0 = V and for each i ∈ [`] let Ai ⊆ V be the neighbour-
hood of vi in G. We apply Lemma 5 to the sets A0, . . . , A`−1 with p = (k + 1 + 6

√
`)/`.

(Note that if p > 1 then with a simple calculation it is easy to see we can obtain the desired
graph H simply by deleting any `− k vertices from G.) Thus there exists Y ⊆ V satisfying

||Ai ∩Y| − p|Ai|| ≤ 6
√
`

for all i ∈ {0, . . . , `− 1}. Applying this for i = 0 and noting A0 ∩Y = Y gives

k + 1 = p|A0| − 6
√
` ≤ |Y| ≤ p|A0|+ 6

√
` = k + 1 + 12

√
Pk

and applying it for i ∈ [`− 1] gives

|Ai ∩Y| ≥ p|Ai| − 6
√
` ≥ k

`

(
1
2
`+ η

√
`

)
− 6
√
` =

1
2

k + η
k√
`
− 6
√
`

=
1
2

k +
(

η√
P
− 6
√

P
)√

k.
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Thus Y has between k + 1 and k + 1 + 12
√

P
√

k vertices. Let Z be an arbitrary subset of
Y \ {v`} of size k and let H = G[Z]. Then since we have removed at most 12

√
Pk + 1 ≤

13
√

Pk vertices from Y to obtain Z, we have for each i ∈ [`− 1] that

|Ai ∩ Z| ≥ 1
2

k +
(

η√
P
− 19
√

P
)√

k.

In particular this means

δ(H) ≥ 1
2

k +
(

η√
P
− 19
√

P
)√

k,

as desired.

4 Proof of Theorem 1

To prove the theorem, we use as a subroutine the following algorithm, which is inspired by
the greedy algorithm for max-cut or min-bisection.

Lemma 7. Let G = (V, E) be a graph of order n with δ(G) ≥ 1
2 (n− 1) + t for some number t. Let

α ∈ [0, 1] and let a, b ∈ N such that a + b = n. Then either there exists A ⊆ V of size a such that
δ(G[A]) ≥ 1

2 a− 1 + αt, or there exists B ⊆ V of size b such that δ(G[B]) ≥ 1
2 b− 1 + (1− α)t.

Proof. Take any A ⊆ V of size a and let B := V \ A. If there exists x ∈ A with degA(x) <
1
2 a − 1 + αt and y ∈ B with degB(y) < 1

2 b − 1 + (1− α)t, then move x to B and y to A,
i.e. swap x and y. Note that when there is no such pair of vertices x, y we are done. We just
need to prove that, if we keep iterating, then this procedure must stop at some point.

Consider the number of edges in G[A] before and after we swap x and y. The number
of edges in G[A] increases by at least

degA(y)− degA(x)− 1 ≥ δ(G)− degB(y)− degA(x)− 1 ≥ 1/2,

(where we subtracted 1 in case x and y are adjacent). This shows that we cannot continue
to swap pairs indefinitely.

At last we are ready to prove the main result. In fact, we prove something stronger.

Theorem 8. There exist constants D, D′ > 0 such that for k ≥ 2 and any graph G on Dk ln k
vertices, G or its complement G has an induced subgraph on k vertices with minimum degree at
least 1

2 (k− 1) + D′
√
(k− 1)/ ln k.

Proof. Set ν = 160, C = C(ν) as defined according to Theorem 2, and D := 4C. Also set
D′ := 1/

√
D.

By Theorem 2, since C · 2k ln(2k) ≤ 4Ck ln k = Dk ln k ≤ |V(G)|, we find G or G has an
induced subgraph H on ` ≥ 2k vertices with δ(H) ≥ 1

2 (`− 1) + ν
√
`− 1. If ` ≡ 0 (mod k)

then we can and will repeatedly apply Lemma 7 to split the graph into parts whose sizes
are multiples of k, eventually finding the desired subgraph. Otherwise we must take an
extra application of Lemma 7 at the beginning to break off the residual vertices modk and
treat these separately, which we now do.

Let x = ` mod k (so x ∈ {0, . . . , k− 1}). We can now apply Lemma 7 to H with a = k+ x,
b = `− k− x, t = ν

√
`− 1 and α = 1/2. Suppose this gives us a subset A ⊆ V(H) of size a

such that
δ(H[A]) ≥ 1

2
a− 1 +

1
2

ν
√
`− 1 ≥ 1

2
a +

1
4

ν
√
` ≥ 1

2
a +

1
4

ν
√

a.
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Then k ≤ a < 2k and, so applying Lemma 6 (with P = a/k ∈ [1, 2] and η = ν/4 = 40)
yields a subset A′ ⊆ A of size k such that

δ(H[A′]) ≥ 1
2

k +
(

40√
P
− 19
√

P
)√

k ≥ 1
2

k +
(

40√
2
− 19
√

2
)√

k ≥ 1
2

k +
√

2k,

which is more than required. In case Lemma 7 does not produce such a set A, it gives
instead a subset B of size b = ` − k − x ≡ 0 (mod k) such that δ(H[B]) ≥ 1

2 (b − 1) +
1
2 ν
√
`− 1− 1

2 . We iteratively apply Lemma 7 to H[B] in a binary search to find a desired
induced subgraph as follows.

Set G0 = H[B]. Let `0 := |V(G0)| = b (so that k ≤ `0 ≤ Dk ln 2k and `0 ≡ 0 (mod k))
and set t0 := 1

2 ν
√
`− 1− 1

2 ≥
1
2 ν
√
`0 − 1− 1

2 (so that δ(G0) ≥ 1
2 (`0 − 1) + t0). Suppose that

Gi is given, where Gi has `i vertices with `i ≡ 0 (mod k) and δ(Gi) ≥ 1
2 (`i − 1) + ti for

some number ti. Set ai = b`i/2kck and bi = d`i/2kek so that ai + bi = `i and ai ≡ bi ≡ 0
(mod k). Apply Lemma 7 with G = Gi, a = ai, b = bi, t = ti, and α = 1

2 . Then we either
obtain a set of vertices Ai of size ai such that δ(Gi[Ai]) ≥ 1

2 ai − 1 + 1
2 ti, in which case we

set Gi+1 := Gi[Ai] = H[Ai], or we obtain a set of vertices Bi of size bi such that δ(Gi[Bi]) ≥
1
2 bi − 1 + 1

2 ti, in which case we set Gi+1 := Gi[Bi] = H[Bi]. Now set `i+1 = |V(Gi+1)| and
note that `i+1 ≡ 0 (mod k) and δ(Gi+1) ≥ 1

2 (`i+1 − 1) + ti+1, where ti+1 = 1
2 (ti − 1). Note

also that `i+1/k ≤ d`i/2ke.
In this way we obtain subgraphs G0, G1, . . . of G0 = H[B] and we see from the recursion

for `i above that if `i > k then `i+1 < `i. Thus there exists some j such that `j = k (since `i ≡
0 (mod k) for all i) and an easy computation shows we can assume that j ≤ log2(`0/k) + 1.
The recursion for ti implies that ti ≥ t02−i − 1 so that

tj ≥
t0k
2`0
− 1 ≥ ν(

√
`0 − 1− 1)k

4`0
≥ k√

`0
≥

√
k√

D ln k
= D′

√
k

ln k

(where we used that t0 ≥ 1
2 ν
√
`0 − 1− 1

2 , that `0 ≥ k ≥ 2 with ν = 160, and that `0 ≤
Dk ln k). Thus Gj has k vertices and minimum degree at least 1

2 (k− 1) + D′
√
(k− 1)/ ln k

and is an induced subgraph of H[B] and hence of G or G.

5 Concluding remarks

It is tempting to try using the greedy subroutine (Lemma 7) in a binary search on the
output of Theorem 3(a) of [5], but since we cannot control the order of this output graph,
the search might require O(ln k) steps, which would destroy the minimum degree bounds.

Determination of the second-order term in the minimum degree threshold for polyno-
mial to super-polynomial growth of the fixed quasi-Ramsey numbers is an open problem.
(The corresponding term for the variable quasi-Ramsey numbers was determined in [5].)
We define the fixed quasi-Ramsey number as the least integer R∗c (k) such that for any graph
G on R∗c (k) vertices either G or its complement G contains some subgraph on (exactly) k ver-
tices with minimum degree at least c(k− 1). By Theorem 8 if c− 1

2 = O(
√

1/(k− 1) ln k)
then R∗c (k) is polynomial in k, and by Proposition 3 if c − 1

2 = ω(
√

ln ln k/(k− 1)) then
R∗c (k) is superpolynomial in k. Hence the choice of c − 1

2 for which we find a transition
between polynomial and super-polynomial growth in k of R∗c (k) is determined to within a
O(
√

ln k ln ln k) factor of
√

1/(k− 1). What is it precisely?

8



Last, we remark that, in the above notation, our main result is that R∗1/2(k) = O(k ln k),
while Erdős and Pach showed that R∗1/2(k) = Ω(k ln k/ ln ln k). They also asked if R∗1/2(k) =
Ω(k ln k). This question remains open.
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